Refine Your Search

Topic

Affiliation

Search Results

Technical Paper

Experimental Study of Hydraulic Retarder Waste Heat Recovery Based on the Organic Rankine Cycle

2016-09-27
2016-01-8079
The hydraulic retarder is an important auxiliary braking device. With merits such as its high braking torque, smooth braking, low noise, long service life and small size, it is widely used on modern commercial vehicles. Transmission fluid of traditional hydraulic retarder is cooled by engine cooling system, which exhausts the heat directly and need additional energy consumption for the thermal management component. On account of the working characteristics of hydraulic retarder, this study designs a set of waste heat recovery system based on the Organic Rankine Cycle (ORC). Under the premise of ensuring stable performance of hydraulic retarder, waste heat energy in transmission fluid is recycled to supplement energy requirements for cooling system. First of all, a principle model, which is scaled down according to D300 retarder`s thermal power generation ration of 1:100, is established. Then through theoretical calculations, components' structural parameters of the ORC are determined.
Technical Paper

Pressure Control Method of Hydraulic Retarder Working Chamber

2016-09-27
2016-01-8119
In order to overcome hysteresis and dead zone problems caused by friction for the proportional solenoid valve, and improve rapidity and stability of the pneumatic system on hydraulic retarder, a closed-loop control strategy based on valve coil current was proposed. The high-frequency low-amplitude dither signal was introduced into the proportional solenoid valve. With the proper dither signal, the stick-slip motion of the valve core was transformed into a steady one, and its dynamic performance was improved. Consequently, response time of retarder was reduced during gear changing. The proportional valve coil current was measured as a feedback for a closed-loop control strategy. Combining with the closed-loop strategy, the PI control algorithm was adopted to make sure that valve current was in accordance with the target value. Pulse Width Modulation (PWM) signal was used for the driving of proportional solenoid valve.
Technical Paper

The Energy Saving of Cooling Fan with Electro-Hydraulic Motors Based on Fuzzy Control

2016-09-27
2016-01-8117
The cooling system with two fans is generally driven by electrical motors in the small cars. Compared with the traditional cars, heavy duty trucks have the larger heat dissipation power of cooling system. The motors power consumption of dual fans will be larger and the two electrical motors will occupy a large space in the engine cabin. Hydrostatic drive refers to the cooling fan is driven by hydraulic motor, but it has the low transmission efficiency. According to the engine water temperature value and the actual working status of the hydraulic system, the actual speed of cooling fan can be controlled by the computer, which guarantees the normal working water temperature of the engine. Hydrostatic drive is generally applied to heavy vehicles, engineering machinery and excavators as driving source of cooling fan which contains the advantages of large output power, overload protection, continuous speed regulation and flexible space arrangements.
Technical Paper

Effects Analysis and Modeling of Different Transmission Running Conditions for Transmission Efficiency

2016-04-05
2016-01-1096
Several factors including internal factors which are related to the structure and components of transmission and external factors which are related to the running condition influence transmission efficiency (TE) collectively. Selected one manual transmission as the research object, this paper mainly analyzes factors including gears and bearings power loss through theoretical calculation and the external factors, such as gears, temperature and torque. Firstly, with a methodology, the overall efficiency of the manual transmission is calculated based on factors. Then, this paper discusses efficiency through external factor. This transmission is experimented on transmission test bench. On the bench, the driving motor (DM) simulates the power input of engine and the load motor (LM) simulates the whole resistance of vehicle. The mechanical transmission is operating in different speeds, torques and work temperature, thus the corresponding data are obtained.
Technical Paper

The Research of Solar Organic Rankine Evaporation Cycle System for Vehicle

2016-04-05
2016-01-1268
With the help of organic working medium absorbing the solar energy for steam electric power generation, green energy can be provided to automotive accessories so as to improve the vehicle energy efficiency. In the hot summer, the exhausted heat resulting from cars’ directly exposing to the sun can be used to cool and ventilate the passenger compartment. Considering the space occupied by the system in the combination of both practical features for solar heat source--low power and poor stability-- a compact evaporation structure was designed to enhance the solar utilization efficiency. In the research, the heat source of power and temperature variation range was determined by the available solar roof with photo-thermal conversion model. Then started from the ratio of exhausted heat utilization corresponding to evaporator’s characteristic parameter, the performance analysis was made in the different working conditions.
Technical Paper

Flow Field Analysis and Structure Optimization of the Suction Nozzle for Road Sweeper

2016-04-05
2016-01-1356
As a key component of airstream system equipped in the road sweeper, the structure of the suction nozzle determines its internal flow field distribution, which affects the dust-sucking efficiency to a great degree. This research is aiming to determine a better suction nozzle structure. Starting with an analysis of the one used in a certain type of road sweeper, the initial model of the suction nozzle is established, and the internal flow field is simulated with typical computational fluid dynamics (CFD) software named FLUENT. Based on the simulation results, the dust-sucking capability of the initial structure is evaluated from the aspects of pressure and velocity distribution. Furthermore, in order to explore the influence of different structural parameters on the flow field distribution within the suction nozzle, models with different cavity heights and shoulder angles are established, and Univariate Method is utilized to analyze the contrast models.
Technical Paper

Big-Data Based Online State of Charge Estimation and Energy Consumption Prediction for Electric Vehicles

2016-04-05
2016-01-1200
Whether the available energy of the on-board battery pack is enough for the driver’s next trip is a major contributor in slowing the growth rate of Electric Vehicles (EVs). What’s more, the actual capacity of the battery pack depend on so many factors that a real-time estimation of the state of charge of the battery pack is often difficult. We proposed a big-data based algorithm to build a battery pack dynamic model for the online state of charge estimation and a stochastic model for the energy consumption prediction. And the good performance of sensors, high-bandwidth communication systems and cloud servers make it convenient to measure and collect the related data, which are grouped into three categories: standard, historical and real-time data. First a resistance-capacitance ( RC )-equivalent circuit is taken consideration to simplify the battery dynamics.
Technical Paper

Dynamic Modeling and State Estimation for Multi-In-Wheel-Motor-Driven Intelligent Vehicle

2017-09-23
2017-01-1996
Dynamic modeling and state estimation are significant in the trajectory tracking and stability control of the intelligent vehicle. In order to meet the requirement of the stability control of the eight-in-wheel-motor-driven intelligent vehicle, a full vehicle dynamics model with 12 degrees of freedom, including the longitudinal, lateral, yaw and roll motion of the body, and rotational motion of 8 wheels, is established for the research of the intelligent vehicle in this paper. By simulation with MATLAB/SIMULINK and by comparison with the TruckSim software, the reliability and practicality of the dynamics model are verified. Based on the established dynamics model, an extended Kalman filter (EKF) state observer is proposed to estimate the vehicle sideslip angle, roll angle and yaw rate, which are the key parameters to the stability control of the intelligent vehicle.
Technical Paper

Development and Test of ESC Controller with Driver-In-the-Loop Platform

2017-09-23
2017-01-1993
This paper presents a Driver-In-the-Loop (DIL) bench test system for development of ESC controller. The real-time platform is built-up based on NI/PXI system and the real steering/throttle/braking actuator. In addition, the CarSim provides the vehicle model and the animator for virtual driving environment. A hierarchical ESC controller is proposed in MATLAB/Simulink then download into PXI. In the upper motion controller, the sliding mode theory is adopted and the logic threshold algorithm is used in the lower slip controller. Finally, ESC test is implemented under typical conditions by DIL and Model-In-the-Loop (MIL). The results show that, DIL could make up the shortage of driver model which can’t accurately simulate the emergency response of real driver. Therefore, DIL test could verify the ESC controller more accurately and effectively with considering the human-vehicle-road environment.
Technical Paper

The Research of the Heavy Truck’s Warming System

2017-10-08
2017-01-2221
It’s not easy to start the engine in winter, especially in frigid highlands, because the low temperature increases the fuel’s viscosity, decreasing the lubricating oil flow ability and the storage performance of battery. Current electrical heating method can improve the engine starting performance in low temperature condition, but this method adds an external power to the engine, leading to the engine cannot maintain an efficient energy utilization. A warming device using the solar energy is designed to conserve the energy during the daytime, and directly warm up the engine at the time when the engine turns off for a long time, especially during the night. A solar collector installed on the top of the vehicle is used to convert the solar energy to the thermal energy, which is then transferred to the heat accumulator that contain the phase-change medium which can increase the heat storage performance.
Technical Paper

Driving Force Coordinated Control of Separated Axle Hybrid Electric Dump Truck

2017-10-08
2017-01-2462
Due to the increase of mining production and rising labor costs, manufacturers of construction and mining equipment are engaged in developing large tonnage mining truck with good dynamic performance and high transport efficiency. This paper focuses on the improvement of the dynamic performance of a 52t off-highway dump truck. According to the characteristics of its operating cycle, electric auxiliary drive system is installed in the front axle aiming at improving the utilization rate of ground adhesion. The new all-wheel drive hybrid electric system makes it possible for dump truck transports at a higher velocity. Both the conventional dump truck model and the new all-wheel drive hybrid truck model are built based on the AVL-Cruise platform. Meanwhile, under the premise of enough dynamic performance, fuel consumption can be minimized by collaborative optimization in Isight.
Technical Paper

Effect of Temperature on Braking Efficiency Stability of Magnetorheological Fluid Auxiliary Braking Devices

2017-09-17
2017-01-2510
Fluid auxiliary braking devices can provide braking torque through hydraulic damping, fluid auxiliary braking devices can also convert vehicular inertia energy into transmission fluid heat energy during the braking, which can effectively alleviate the work pressure of the main brake. Traditional hydraulic auxiliary braking devices use transmission fluids to transmit torque, however, there is a certain lag effect during the braking. The magnetorheological fluid (MR fluid) can also be used to transmit torque because it has the advantages of controlling braking torque linearly and responding fast to the magnetic field changed. The temperature of MR fluid will increase when the vehicle is engaged in continuous braking. MR fluid temperature changes will cause a bad influence on the efficiency stability of auxiliary braking.
Technical Paper

The Effect of Commercial Vehicle Head-Up Display Reminding System on Driving Safety in Mountainous Area

2017-09-17
2017-01-2500
Head-up Display (HUD) system can avoid drivers’ distraction on dashboard and effectively reduce collisions caused by emergency events, which is gradually being realized by researchers around the world. However, the current HUD only displays information like speed, fuel consumption, other information like acceleration and braking can’t be displayed yet. This research will use the indicator symbol‘s color and position change to remind drivers to brake or accelerate. Drivers can do driving operation timely and accurately. The system has the advantages of safety, intuition and real-time. The vehicle safe speed is calculated according to the road parameters, like adhesion coefficient and slope, and vehicle parameters, such as vehicle mass and centroid. Then, the appropriate braking operations are obtained by combining the vehicle driving state. The braking information is corresponded to the color and position change of the indicator symbol to prompt the drivers by the HUD interface.
Technical Paper

A Comparative Study on Fuel Economy for CVT and 9-speed AT based Vehicles

2017-10-08
2017-01-2435
It is well-known that, compared with automatic transmissions (ATs), continuously variable transmission (CVT) shows advantages in fuel saving due to its continuous shift manner, since this feature enables the engine to operate in the efficiency-optimized region. However, as the AT gear number increases and the ratio gap narrows, this advantage of CVT is challenged. In this paper, a comparative study on fuel economy for a CVT based vehicle and a 9-speed automatic transmission (AT) based vehicle is proposed. The features of CVT and AT are analyzed and ratio control strategies for both the CVT and 9-speed AT based vehicles are designed from the view point of vehicle fuel economy, respectively. For the 9-speed AT, an optimal gear shift map is constructed. With this gear shift map, the optimal gear is selected as vehicle velocity and driving condition vary.
Technical Paper

Battery Thermal Management System Using Water as a Phase Change Material

2017-10-08
2017-01-2454
In these years, the advantages of using phase change material (PCM) in the thermal management of electric power battery has been wide spread. Because of the thermal conductivity of most phase change material (eg.wax) is low, many researchers choose to add high conductivity materials (such as black lead). However, the solid-liquid change material has large mass, poor flow-ability and corrosively. Therefore, it still stays on experiential stage. In this paper, the Thermal characteristics of power battery firstly be invested and the requirements of thermal management system also be discussed. Then a new PCM thermal management has been designed which uses pure water as liquid phase change material, adopts PCM with a reflux device for thermal management.
Technical Paper

Suspension Performance and Energy Harvesting Property Study of a Novel Railway Vehicle Bogie with The Hydraulic-Electromagnetic Energy-Regenerative Shock Absorber

2017-03-28
2017-01-1483
Systematic research on dynamic model, simulation analyses, prototype production and bench tests have been carried out in recent years on the most popular energy-harvesting shock absorbers-the mechanical motion rectifier (MMR), and the hydraulic-electromagnetic energy-regenerative shock absorber (HESA). This paper presents a novel application of the HESA into bogie system of railway vehicles. In order to study the differences of suspension performance and energy harvesting property between first suspension system and second suspension system of the application, simulation models are built in AMESim to make comparison studies on the different department suspensions caused by the nonlinear damping behaviors of the HESA. The simulation results show that the system can effectively reduce the impact between wheel and rail tracks, while maintaining good potential to recycle vibratory energy.
Technical Paper

A Modeling Study of the Effects of Butanol Addition on Aromatic Species in Premixed Butane Flames

2016-04-05
2016-01-0574
The motivation of the present work was to understand the mechanism by which alcohols produce less aromatic species in their combustion process than an equal amount of hydrocarbon with similar molecular structure does. Due to its numerous advantages over short-chain alcohols, butanol has been considered very promising in soot reduction. Excluding the influence of spray, vaporization and mixing process in engine cases, an adiabatic constant-pressure reactor model was applied to investigate the effect of butanol additives on aromatic species, which are known to be soot precursors, in fuel-rich butane flames. To keep the carbon flux constant, 5% and 10% oxygen by mass of the fuel were added to butane using butanol additive, respectively. Based on the soot reduction effects proposed in literature, effects on temperature, key radical concentrations and the carbon removal from the pathway to aromatic species were considered to identify the major mechanism of reduction in aromatic species.
Technical Paper

Simulation Study on Vehicle Road Performance with Hydraulic Electromagnetic Energy-Regenerative Shock Absorber

2016-04-05
2016-01-1550
This paper presents a novel application of hydraulic electromagnetic energy-regenerative shock absorber (HESA) into commercial vehicle suspension system and vehicle road performance are simulated by the evaluating indexes (e.g. root-mean-square values of vertical acceleration of sprung mass, dynamic tire-ground contact force, suspension deflection and harvested power; maximum values of pitch angle and roll angle). Firstly, the configuration and working principle of HESA are introduced. Then, the damping characteristics of HESA and the seven-degrees-of-freedom vehicle dynamics were modeled respectively before deriving the dynamic characteristics of a vehicle equipped with HESA. The control current is fixed at 7A to match the similar damping effect of traditional damper on the basis of energy conversion method of nonlinear shock absorber.
Technical Paper

Experimental Study on Performance and Emission of Acetone-Ethanol and Gasoline Blends in a PFI Spark Ignition Engine

2016-04-05
2016-01-0833
To face the challenges of fossil fuel shortage and air pollution problems, there is growing interest in the potential usage of alternative fuels such as bio-ethanol and bio-butanol in internal combustion engines. The literature shows that the acetone in the Acetone-Butanol-Ethanol (ABE) blends plays an important part in improving the combustion performance and emissions, owing to its higher volatility. In order to study the effects of acetone addition into commercial gasoline, this study focuses on the differences in combustion, performance and emission characteristics of a port-injection spark-ignition engine fueled with pure gasoline (G100), ethanol-containing gasoline (E30) and acetone-ethanol-gasoline blends (AE30 at A:E volumetric ratio of 3:1). The tests were conducted at 1200RPM with the default calibration (for gasoline), at 3 bar and 5 bar BMEP under various equivalence ratios.
Technical Paper

A Numerical Study on the Effects of Hot EGR on the Operation of Natural Gas Engine Ignited by Diesel-Butanol Blends

2017-03-28
2017-01-0760
Butanol, which is a renewable biofuel, has been regarded as a promising alternative fuel for internal combustion engines. When blended with diesel and applied to pilot ignited natural gas engines, butanol has the capability to achieve lower emissions without sacrifice on thermal efficiency. However, high blend ratio of butanol is limited by its longer ignition delay caused by the higher latent heat and higher octane number, which restricts the improvement of emission characteristics. In this paper, the potential of increasing butanol blend ratio by adding hot exhaust gas recirculation (EGR) is investigated. 3D CFD model based on a detailed kinetic mechanism was built and validated by experimental results of natural gas engine ignited by diesel/butanol blends. The effects of hot EGR is then revealed by the simulation results of the combustion process, heat release traces and also the emissions under different diesel/butanol blend ratios.
X